
Scalability and Flexibility in Document
Management Systems
Comparing Server-Based and Serverless Architectures

FormKiQ: Flexible Document Management

A FormKiQ White Paper - updated April 3rd, 2024 (v3.0)

Learn more about our features and pricing at formkiq.com

Flexible Document Management

FormKiQ

Background

FormKiQ: Flexible Document Management

As digitization and process improvement continues, boosted by
globalization, remote work, and the reduction of paper-based and
manual processes in general, the reliance on document and information
management systems increases in step.

With the recent general availability of artificial intelligence for
enterprises, this process change has now accelerated, as has the
opportunity for efficiency gains.

As cloud-based applications and storage increase, both from general
digitization and from the integration of AI, there is an opportunity to
leverage cloud-native services to create document management and
information management systems that can keep pace with both the
growth and process innovation of any organization.

What is scalability and why is it essential?

Scalability is the ability for a software solution to maintain functionality
no matter the size of your data or the amount of processing required.

This is not only important for large data sets and complex processes; it's
essential that smaller data sets and simpler processes are handled by the
solution in the most efficient manner possible.

In other words, a small business and a large business should both be able
to make effective use of the solution, with no minimum level of size or
complexity required for a scalable solution to be economical.

For document management systems,
scalability matters for multiple reasons:

unlimited capacity is available for document and metadata storage,
with high availability and redundancy often included in the services

system performance, i.e., the organization and retrieval of
documents, does not degrade with the growth in the number of
documents that is expected over time

creating a replica of the live application for development or testing
can be done at low cost

the system can not only scale up with growth but can also scale
down using the same automated processes if the organization
contracts, such as in the case of seasonal variation

also related to growth and contraction, migration and integration
processes often include initial or periodic times of high usage, a
temporary scaling up followed by a scaling down to regular usage
levels

scalability in architecture allows for the easy addition of new
regions, languages, and compliance with local regulations and data
residency requirements without a major overhaul of the existing
infrastructure

scalable systems are often more resilient to failures, as they can
redistribute workloads to healthy resources in the event of a
component failure; additionally, scalability plays a crucial role in
disaster recovery strategies, enabling quick scaling up of resources
to replace those affected by catastrophic events

FormKiQ: Flexible Document Management

•

•

•

•

•

•

•

How is scalability achieved?

FormKiQ: Flexible Document Management

There are two main methods to achieve scalability:

Increase the capacity of the system, often through replicating
the system, i.e., adding new database instances and/or
processing instances

Optimize the performance of the system, allowing more input,
output, and processing within the same system capacity

While optimization is an important part of all software development, the
most effective way to achieve scalability consistently is by increasing
capacity, and that is often achieved by removing any barriers that
prevent or restrict that capacity increase.

This is commonly done through cloud-based software, avoiding two
major logistical barriers, the need for employing a hardware
infrastructure team and the need to source compute and networking
hardware for capacity increases.

0

•

What is flexibility and why is it essential?

Flexibility in software is the ability of a system to adapt to changing
conditions and requirements without extensive redesign or
redevelopment. This includes the capacity to accommodate new
features, integrate with other systems, adjust to varying workloads, and
allow for user-specific customizations, all while maintaining
performance, security, and compliance standards.

Flexibility ensures that the software can evolve over time in response to
new business strategies, technological advancements, and user
feedback, thereby extending its usefulness and preventing
obsolescence.

As with scalability, flexibility is important for any size organization; for
instance, a startup may choose to innovate on existing processes, so a
reliance on less flexible tools may cause unnecessary overhead that
could risk the overall viability of the business model.

FormKiQ: Flexible Document Management

In addition, greater efficiency in scaling capacity can be found by
utilizing serverless computing in your solution design.

(For more information on scalability itself, see Foundations of Scalable
Systems by Ian Gorton at
https://www.oreilly.com/library/view/foundations-of-
scalable/9781098106058/ch01.html)

https://www.oreilly.com/library/view/foundations-of-scalable/9781098106058/ch01.html
https://www.oreilly.com/library/view/foundations-of-scalable/9781098106058/ch01.html

For document management systems,
flexibility matters for multiple reasons:

as organizations grow and change over time and their document
management needs shift, flexibility allows the system to adapt to
these evolving requirements without needing a complete overhaul

different users and departments within an organization may have
unique needs and preferences for how they manage and interact
with documents

processes may need to change depending on document types,
document content, or external factors

integrations with other systems is generally required, with future
integration needs not yet known

security adaptations may be required at any time, often with short
timeframes for implementation

systems that enable the use of only a subset of existing modules can
provide substantial cost efficiencies over static architectures

as with scalability, flexibility in architecture allows for the easy
addition of new regions, languages, and compliance with local
regulations and data residency requirements without a major
overhaul of the existing application

as with scalability, flexible systems are often more resilient to
failures, as they can adjust workloads in the event of a component
failure

FormKiQ: Flexible Document Management

•

•

•

•

•

•

•

•

How is flexibility achieved?

FormKiQ: Flexible Document Management

There are two main methods to achieve flexibility:

Utilize configuration settings, whether through an initial
onboarding with configuration files, or with a configuration
administration system for real-time changes

Change functionality to meet customer specifications,
providing a bespoke solution when needed, but usually by
diverging from the standard codebase and creating an
additional and ongoing maintenance burden

While configuration is almost always required for adapting a system to
existing process, even if it’s just a settings page, most organizations
require more robust customization, and variances in the codebase can
be found in many enterprise products.

This code-level customization can increase risk on both sides.

For the vendor, it can lead to codebase fragmentation, making future
updates and maintenance more complex and error-prone.

For the customer, this bespoke approach may result in compatibility
issues, increased dependency on the vendor for support, and challenges
in adapting to new features or system upgrades, potentially leading to
higher long-term costs and operational disruptions.

0

--

•

How newer software systems approach flexibility

FormKiQ: Flexible Document Management

Several innovations can be utilized by newer systems to enable
flexibility while reducing the risk of codebase fragmentation and
providing alternatives to large configuration files, including:

modular design, including microservices and containerization as
needed, is leveraged to provide more robust customization than
configuration alone can achieve, without needing to enable one-off,
divergent changes to the codebase

increasing automation made available for both testing and
deployment, often as a foundational component of the modular
systems in use; this includes infrastructure-as-code, to ensure that
the servers and managed resources are orchestrated in a consistent
and verifiable way

no-code features such as workflow and ruleset designers, and more
intuitive configuration administration, combined with robust
configuration versioning, enable more granular control over
flexibility via configuration settings

API-first design is utilized to ensure that all functionality is accessible
programmatically, enabling not only integrations and migrations, but
also allowing flexibility through custom modules or third-party tools
to fill functionality gaps

event-driven architecture for highly decoupled, asynchronous
interactions between different parts of the system based on events,
allowing for more dynamic and responsive processes and
components

serverless computing abstracts server management and
infrastructure concerns, enables automatic scaling, high availability, a
pay-for-use billing model, and provides flexibility in managing
workload demands without the complexity of traditional
infrastructure

•

•

•

•

•

•

What is serverless computing?

FormKiQ: Flexible Document Management

Serverless computing is a cloud-native architecture that allows
developers to build and run applications without having to manage
servers.

The term "serverless computing" can be considered imprecise, as the
software does still run on servers; the term relates to the fact that the
servers are abstracted from the software, and that any configuration and
maintenance, and even the number and types of servers, are managed
by the cloud provider to meet real-time demand. This abstraction not
only simplifies the infrastructure management required for the
functioning of the software, but also provides a real-time cost model for
computer processing, where the customer is only charged for the
amount of time the code is being executed.

How does serverless compare to server-based?

In a traditional server-based architecture, the software provider
configures and maintains a specific number of always-on servers
according to predetermined specifications. If demand increases, either
more servers are required to be added to the pool of available servers,
or the servers themselves need to be upgraded by the addition of more
memory, additional CPUs, an increase of storage space, or a combination
of all three. If demand wanes, whether through long-term contraction or
just due to an overnight, weekend, or holiday period, the servers would
need to be reduced in number or specifically downgraded in order to
prevent wasting computing power.

While it's possible to use automation to scale servers, and while cloud
providers can allow autoscaling by providing additional servers on
demand, there are limitations to the minimum and maximum size of
servers, and it's ultimately the customer's responsibility to ensure that
they have mechanisms in place to scale up and down as needed.

Most of these innovations are well-known, but a key one, serverless
computing, is still not utilized extensively by most organizations.

In addition, traditional server-based architecture often requires routine
tasks, such as managing the operating system and file system, keeping
up with security patches, and setting up and maintaining logging and
monitoring. Cloud providers can abstract some of these tasks, such as
Amazon EC2 providing logging through CloudWatch or file handling
using Elastic File Storage, but some tasks will always be the
responsibility of the customer.

FormKiQ: Flexible Document Management

How serverless is being used

Many software solutions combine server-based and serverless
components; AWS customers often make use of S3 to store files, AWS
Lambda functions to run tasks, DynamoDB for a NoSQL database, and
CloudFront as a content delivery network. All of these components are
part of AWS' serverless offerings, where they fulfill workflows without
any requirement to maintain and configure servers or to set up scaling
automation, i.e., autoscaling.

It's common to see static websites or JavaScript-based client
applications that are stored in S3 and served by CloudFront; in many
cases, these sites or applications may have some limited back-end
functionality handled by AWS Lambda and API Gateway, for instance
when handling a contact form.

For document management systems, expanding the scope and
responsibilities of serverless components allows for better scalability, by
reducing the components that require server configuration and scaling
mechanisms. While some functionality may not be possible with
serverless components, such as providing full text search using Amazon
OpenSearch, using serverless whenever possible allows the restrictions
on scaling to be reduced significantly.

How does serverless affect cost?

FormKiQ: Flexible Document Management

Serverless is not free, though in the case of smaller workloads,
serverless can often be run almost entirely within the free tier provided
by the major cloud providers. For some workflows, on-demand
serverless can be more expensive than a stable server-based workflow,
particularly when no cost optimizations have been performed. In the
case of AWS, there are upfront cost commitments that can be made for
processing workflows, such as DynamoDB Provisioned Capacity and
Compute Savings Plans. There are also optimizations available for
storage, specifically storage tiers (and intelligent tiering, when available)
for products such as S3 and DynamoDB.

Where serverless excels is in the dynamic scaling, which is exactly how it
achieves its scalability. In the case of storage, this scalability means that
your S3 or DynamoDB storage will never run out of space, but at the
cost of your cost growing as your storage increases. In the case of
compute workflows such as AWS Fargate or AWS Lambda, it's possible
to run hundreds or even thousands of tasks concurrently. As Fargate
tasks can use 4 virtual CPUs and up to 30GB of memory each, this level
of compute concurrency should be able to meet upwards of 99.999% of
workloads.

Where server-based excels is when your workloads use the majority of
your server-based capacity. As this theoretical study from AWS
indicates when comparing EC2 to Fargate for AWS ECS —
https://aws.amazon.com/blogs/containers/theoretical-cost-
optimization-by-amazon-ecs-launch-type-fargate-vs-ec2/ — if your
workload is able to remain at near-full utilization of your provisioned
EC2 servers, you will see some savings over serverless Fargate; in the
case of this paper, they estimated the savings on an ECS cluster of fully-
utilized EC2s as 20% over the same cluster using AWS Fargate. But in
cases where the ECS cluster has little to no utilization, Fargate can be up
to 87% cheaper than EC2.

https://aws.amazon.com/blogs/containers/theoretical-cost-optimization-by-amazon-ecs-launch-type-fargate-vs-ec2/
https://aws.amazon.com/blogs/containers/theoretical-cost-optimization-by-amazon-ecs-launch-type-fargate-vs-ec2/

Flexibility: considering serverless despite a higher usage cost

FormKiQ: Flexible Document Management

The key component of systems that would benefit from a serverless
model is a requirement for flexibility in usage. Some workloads are
consistent enough that it can be more cost-effective to provision server-
based infrastructure; for example, if a web application has a consistent
level of traffic, with little to no variance, the per-request cost of a
server-based architecture will likely be lower than a serverless
architecture.

However, even in cases like this, there are some advantages to
serverless that may outweigh the moderate increase in cost:

even with relative consistency in workload for a server-based
system, any large spike in capacity needs has a higher risk of failure
some server-based components still grow in size despite a
consistent level of usage, such as log files, databases, or cache
stores, and when hard limits are reached, the risk of failure increases
it can be cost-prohibitive to replicate server-based systems for non-
prod environments, depending on the components required
each server-based component requires networking and security
configurations that are generally more complex than connecting
together various serverless components and managed services

Looking at serverless for specific document management
system tasks

While there are benefits and drawbacks to serverless depending on the
system being designed, there are specific tasks within the document
management system workflows that can leverage serverless
components or managed services for a lower total cost of ownership
over a server-based architecture.

•

•

•

•

Authentication and authorization

FormKiQ: Flexible Document Management

As document management systems often include documents of varying
confidentiality and differing ownership, it’s essential for a document
management system to include authentication and authorization
functionality.

In a server-based architecture, authentication often utilizes a database
instance as well as the compute instance; in cases of federated logins,
the database instance can be replaced by a reliance on an existing
identity provider such as Microsoft Active Directory or Google
Workspace.

By leveraging a managed authentication service like Amazon Cognito, a
document management system can use the built-in authentication or a
federated authentication, with no requirement to store user information
within a specific database instance.

For authorization, a server-based architecture often implements a
module within the application code. This adds some processing
overhead to the application and the server instances that host it. A
serverless API management service, like Amazon API Gateway, can be
used to offload most of the authorization processing, whether through
combining that service with a managed authentication service like
Cognito, or by relying on internal cloud-based identity and access
management such as AWS IAM.

Document storage

In a server-based architecture, the storage of documents can be handled
through the use of a file server, or even by storing on a single application
server, but scaling in either of these models can be challenging.

Using a managed object storage service like Amazon S3 removes any
scaling challenges, and most include storage tiers for better cost
efficiency for long-term infrequent-access storage.

Amazon S3 is known to be more reliable than a local file server, due to
its high fault tolerance, reliability, and availability. Because S3 has no
minimum storage requirements and offers intelligent tiering, archives,
and lifecycle policies to remove expired content, the cost will generally
be lower than the overhead of a local file server.

FormKiQ: Flexible Document Management

Document import

A server-based architecture may include a mail server for receiving
documents via email, and may also include an application module to
receive documents via an API. Scaling can be an important consideration
for both of these methods for importing.

It’s possible to mitigate those scaling concerns through the use of a
managed email service like Amazon SES and an API management service
like Amazon API Gateway. In addition, the object storage service (e.g.,
Amazon S3) can also provide functionality to assist in importing objects,
such as signed URLs for secure uploads, and a command-line interface
(CLI) for uploading objects directly from a workstation or file server.

As the workloads for both a mail server and an API will be variable, the
total cost will likely be lower for managed services vs. configuring and
running an email and application server for import tasks.

Optical character recognition (OCR)

A server-based architecture can include an OCR module, which would
need to be designed to work with inconsistent workloads possibly with
queuing functionality.

A managed service like Amazon Textract allows for offloading of OCR
processing, with other managed services helping for the queueing and
orchestration, such as Amazon SQS. It's also possible to use a well-
configured OCR module that runs using serverless compute with an
open source OCR library such as Tesseract, which may be possible at a

lower cost than by using Amazon Textract, though results and
functionality will vary between the two OCR engines. While Tesseract
provides a lower cost in many cases, Textract may be a better choice
when table or form data needs to be extracted with its structure
maintained.

FormKiQ: Flexible Document Management

With Amazon Bedrock, it’s possible to choose from several large
language models (LLMs) in order to provide the analysis and generative
functionality required for information management workflows.

The benefit to using Bedrock is that since the models are made available
within the AWS account that also stores the documents and metadata,
no personal or proprietary information needs to be transmitted
externally.

But as with OCR, it's possible to use an open source solution for many
AI tasks. For instance, intelligent document processing may be
achievable with comparable results using an open source model such as
those available from Mistral, running on a GPU-based ECS Fargate
container, assuming it includes a mechanism for only running the
container when needed.

Document search

Document management systems require the storage of metadata for
each document to assist in classification and search. For server-based
systems, this would usually include a database instance.

A serverless architecture could involve a managed NoSQL database
service like Amazon DynamoDB, which can store metadata in a flexible
key-value model, which not only enables easier scaling than a server-
based database cluster, but can remove the need for data migration on
system updates.

Artificial Intelligence (AI), both for intelligent document classification
(IDP) and content generation (GenAI)

For more robust search, such as Fulltext Search, it’s possible to
experiment with a managed serverless relational database, like Amazon
Aurora Serverless, or to interact with a server-based Fulltext Search
system like Elasticsearch or Amazon OpenSearch. Serverless
architecture can easily leverage these server-based features as required.

Client Interface

FormKiQ: Flexible Document Management

A server-based system may include a full-stack monolithic application
that includes the application controller layer and the presentation of
visual information, or it may split these responsibilities between an
API/middleware and one or more front-end clients. This could involve
one or more application server clusters, and the use of auto-scaling
configurations could prevent most cases of failure due to an overload of
requests.

A serverless system would likely include separation between the API
and the client, though that is not guaranteed, and could make use of a
managed API service like Amazon API Gateway for the API, while using
a managed object storage like Amazon S3 and a CDN like Amazon
CloudFront to service a static front-end client. This client could use a
JavaScript client framework like React or Angular to interact with the
API, without requiring an application server instance.

Conclusion
While there is no reason why a server-based architecture cannot be
used for a document management system, the importance of scalability
for a DMS, as well as the specific use-cases of a DMS that are well-
suited to managed services and serverless components, makes a server-
less architecture a clear competitor, and in the case of a document
management system hosted in a cloud provider like AWS, a low-risk and
high-value choice.

Learn more about FormKiQ's Serverless and API-First Document Management
options at https://formkiq.com

